Key-Recovery Attacks Against the MAC Algorithm Chaskey

Chrysanthi Mavromati

Capgemini-Sogeti R&D Lab and UVSQ Laboratoire PRiSM, France

SAC 2015
The MAC Algorithm Chaskey

Permutation-based MAC algorithm introduced by Mouha et al. in 2014.

- Underlying permutation based on ARX design.
- Similar to CBC-MAC construction with an Even-Mansour block cipher.
- A 128-bit key K generates two subkeys K_s with $s \in \{1, 2\}$:

$$K_1 = \alpha K \text{ and } K_2 = \alpha^2 K.$$
• With data D, it is proven secure up to $T = 2^{128}/D$ evaluations of π.
• Best data/time tradeoff: $D = T = 2^{64}$.
The MAC Algorithm Chaskey

Becomes an Even-Mansour cipher when single-block messages are used.
Results on Even-Mansour Scheme

[Daemen], [Biryukov et al.], [Dunkelman et al.]

Many known attacks against the EM scheme which confirm the main security proof: \(DT = 2^n \).

[Fouque et al.] at Asiacrypt 14

A new collision-based attack using the distinguished point technique against the EM scheme in the multi-user setting.
Finding Collisions: the Distinguished Point Technique

- Define a function \(f \) on a set \(S \) of size \(N \).
- Define a distinguished subset \(S_0 \) of \(S \).
- Build chains from random startpoints: \(x_{i+1} = f(x_i) \).
- Stop chain when \(x_\ell = d \in S_0 \).
- Store \((x_0, d, \ell)\).

\[
\begin{align*}
x_0 & \\
x_1 & \\
x_2 & \\
x_\ell & = d
\end{align*}
\]
Finding Collisions: the Distinguished Point Technique

- Define a function \(f \) on a set \(S \) of size \(N \).
- Define a distinguished subset \(S_0 \) of \(S \).
- Build chains from random startpoints: \(x_{i+1} = f(x_i) \).
- Stop chain when \(x_\ell = d \in S_0 \).
- Store \((x_0, d, \ell)\).

How do we detect a collision?

\[
\begin{align*}
&x_0 \\
&x_1 \\
&x_2 \\
&x_\ell = d
\end{align*}
\]

\[
\begin{align*}
&x_0 \\
&y_0 \\
&d
\end{align*}
\]
The Attack of Fouque et al.

Collision-based attack using the distinguished point technique.

1. Build chains by using functions:

\[F(P) = P \oplus \Pi(P) \oplus \Pi(P \oplus \delta) \]

\[f(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta) \]

For two plaintexts \((P, P')\) where: \(P' = P \oplus K_1\) or \(P' = P \oplus K_1 \oplus \delta\)

\[\Rightarrow F(P') = f(P) \oplus K_1 \text{ (resp. } \oplus \delta) \]
The Attack of Fouque et al.

Collision-based attack using the distinguished point technique.

1. Build chains by using functions:

\[F(P) = P \oplus \Pi(P) \oplus \Pi(P \oplus \delta) \]
\[f(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta) \]

For two plaintexts \((P, P')\) where: \(P' = P \oplus K_1 \) or \(P' = P \oplus K_1 \oplus \delta \)
\[\Rightarrow F(P') = f(P) \oplus K_1 \text{ (resp. } \oplus \delta) \]
The Attack of Fouque et al.

2 Construct a graph:
 - Nodes are labelled by the users and the unkeyed user.
 - If a collision is found, then add a vertex between the two nodes.
 - If a single collision between a user and the unkeyed user is found, then we learn all keys in the connected component.

Analysis of the attack:

For $2^{n/3}$ users, $2^{n/3}$ queries/user, $2^{n/3}$ unkeyed queries
→ recover a constant fraction of $2^{n/3}$ keys
Key-Recovery Attacks Against Chaskey

Use single-block messages:

\[m \xrightarrow{\oplus} K \oplus K_s \xrightarrow{\pi} \Pi_s(m) \]

Build chains by using a function based on Chaskey and then search for collisions between them.
Key-Recovery Attacks Against Chaskey

Use single-block messages:

$$K \oplus K_s$$

$$m \xrightarrow{\oplus} \pi \xrightarrow{\oplus} \Pi_s(m)$$

Build chains by using a function based on Chaskey and then search for collisions between them.

Define functions:

$$\Pi_s(M) = K_s \oplus \pi(M \oplus (K_s \oplus K))$$

$$F_{\Pi_s}(M) = \Pi_s(M) \oplus \Pi_s(M \oplus \delta) \oplus M$$

$$f_{\pi}(M) = M \oplus \pi(M) \oplus \pi(M \oplus \delta)$$
Attack in the Single-User Setting

For a complete block M and an incomplete M':

1. Create chains constructed by using both:

 $$ F_{\Pi_1}(M) = \Pi_1(M) \oplus \Pi_1(M \oplus \delta) \oplus M $$

 $$ F_{\Pi_2}(M') = \Pi_2(M') \oplus \Pi_2(M' \oplus \delta) \oplus M' $$

2. Store all endpoints and search for collisions between the two different types of chains:

 $$ F_{\Pi_1}(M) = F_{\Pi_2}(M') $$

3. If a collision is found, recover:

 $$ K_1 \oplus K \oplus K_2 \oplus K = (\alpha + \alpha^2)K $$
Attack in the Single-User Setting

For a complete block \(M \) and an incomplete \(M' \):

1. Create chains constructed by using both:

\[
F_{\Pi_1}(M) = \Pi_1(M) \oplus \Pi_1(M \oplus \delta) \oplus M
\]

\[
F_{\Pi_2}(M') = \Pi_2(M') \oplus \Pi_2(M' \oplus \delta) \oplus M'
\]

2. Store all endpoints and search for collisions between the two different types of chains:

\[
F_{\Pi_1}(M) = F_{\Pi_2}(M')
\]

3. If a collision is found, recover:

\[
K_1 \oplus K \oplus K_2 \oplus K = (\alpha + \alpha^2)K
\]

\(\Rightarrow \) Collision between two chains of length \(2^{64} \).
The Multi-User Setting

L different users are all using Chaskey based on the same public permutation π.

- Each U_i chooses $K^{(i)}$ and generates $K^{(i)}_s$ with $s \in \{1, 2\}$.

- Define functions:

\[
\Pi^{(i)}_s(M) = \Pi^{(i)}(M) = K^{(i)}_s \oplus \pi(M \oplus (K^{(i)}_s \oplus K^{(i)}))
\]

\[
F^{(i)}_{\Pi^{(i)}}(M) = \Pi^{(i)}_s(M) \oplus \Pi^{(i)}_s(M \oplus \delta) \oplus M
\]

\[
F_{\pi}(M) = M \oplus \pi(M) \oplus \pi(M \oplus \delta)
\]
Attacks in the Multi-User Setting: Simple Application

1. Build chains for every user and the unkeyed user.
2. Store the endpoints and search for collisions between chains:
 - Collision between two chains $F_{\Pi_1}(M)$ and $F_{\Pi_2}(M')$ of user i:
 \[K_1^{(i)} \oplus K^{(i)} \oplus K_2^{(i)} \oplus K^{(i)} = (\alpha + \alpha^2)K^{(i)} \]
 - Collision between similar chains of different users i and j:
 \[K_1^{(i)} \oplus K^{(i)} \oplus K_1^{(j)} \oplus K^{(j)} = (1 + \alpha)(K^{(i)} \oplus K^{(j)}) \]
 \[K_2^{(i)} \oplus K^{(i)} \oplus K_2^{(j)} \oplus K^{(j)} = (1 + \alpha^2)(K^{(i)} \oplus K^{(j)}) \]
 - Collision between different chains of different users i and j (cross collision):
 \[K_1^{(i)} \oplus K^{(i)} \oplus K_2^{(j)} \oplus K^{(j)} = (1 + \alpha)K^{(i)} \oplus (1 + \alpha^2)K^{(j)} \]
 - Collision between a chain of a keyed user i and the unkeyed user:
 \[K_1^{(i)} \oplus K^{(i)} = (1 + \alpha)K^{(i)} \]
 \[K_2^{(i)} \oplus K^{(i)} = (1 + \alpha^2)K^{(j)} \]
Attacks in the Multi-User Setting: Simple Application

3. Build a graph:
 - Each user is represented by two nodes.
 - If a collision is found, put a vertex between the corresponding nodes.

4. Solve the system and recover the users’ keys.
Attacks in the Multi-User Setting: Simple Application

Analysis of the attack

For 2^{43} users, 2^{43} queries/user, 2^{43} unkeyed queries
⇒ recover almost all keys
Variant of Previous Attack: Cross Collisions

1. For two users U_i and U_j, build chains using functions F_{Π_1} and F_{Π_2}.

2. For each chain, store the endpoints and search for a cross collision:

$$K_1^{(i)} \oplus K^{(i)} \oplus K_2^{(j)} \oplus K^{(j)} = (1 + \alpha)K^{(i)} \oplus (1 + \alpha^2)K^{(j)}.$$

3. If a cross collision is detected, recover from the corresponding outputs:

$$K_1^{(i)} \oplus K_2^{(j)} = \alpha K^{(i)} \oplus \alpha^2 K^{(j)}.$$

4. Solve the system:

$$\begin{align*}
(1 + \alpha)K^{(i)} \oplus (1 + \alpha^2)K^{(j)} &= \Delta_1 \\
\alpha K^{(i)} \oplus \alpha^2 K^{(j)} &= \Delta_2
\end{align*}$$

and recover $K^{(i)}$ and $K^{(j)}$.
Variant of Previous Attack: Cross Collisions

Analysis of the attack

- Similar techniques as basic attack.
- Recover keys of two users with only one cross collision between them.

For 2^{32} users, 2^{32} queries per user
\Rightarrow recover keys of two users
Conclusion

New key-recovery attacks on Chaskey in the single and multi-user setting:

1. Single-user setting: recover key with complexity 2^{64} (respects claimed security).

2. Multi-user setting: recover almost all keys in a group of 2^{43} users.

3. Multi-user setting: recover 2 keys in a group of 2^{32} users.
New key-recovery attacks on Chaskey in the single and multi-user setting:

1. Single-user setting: recover key with complexity 2^{64} (respects claimed security).

2. Multi-user setting: recover almost all keys in a group of 2^{43} users.

3. Multi-user setting: recover 2 keys in a group of 2^{32} users.

Thank you for your attention!