Attacks in the multi-user setting: Discrete logarithm, Even-Mansour and PRINCE

Pierre-Alain Fouque1, Antoine Joux2, Chrysanthi Mavromati3

1 Université Rennes 1 and Institut Universitaire de France
2 CryptoExperts and Chaire de Cryptologie de la Fondation de l’UPMC
3 Sogeti/ESEC R&D Lab and UVSQ Laboratoire PRiSM

12 June 2014
The multi-user setting

Cryptographers prove the security of their schemes in a single-user model.

In real world: There are many users, each with a different key, sending each other encrypted data.
Main ideas

- Graph of key relations

- New variant of memory-less collision attacks
Generic discrete logarithm

- Single-user discrete log: time \sqrt{N} (generic group)

- Multi-user discrete log (L logs):
 - studied by Kuhn and Struik
 - use of the parallel version of the Pollard rho technique with distinguished points
 - time \sqrt{NL}, $L \leq N^{1/4}$
Distinguished points for discrete logarithms

- Define a random function $f : \mathcal{G} \rightarrow \mathcal{G}$

 $$f(z) = \begin{cases}
 z^2 & \text{if } z \in \mathcal{G}_1, \\
 gz & \text{if } z \in \mathcal{G}_2,
 \end{cases}$$

 where $\mathcal{G}_1 \cup \mathcal{G}_2 = \mathcal{G}$.

- Define a distinguished subset S_0

- Build chains from random startpoints: $z_{i+1} = f(z_i)$

- Stop chain when $z_\ell = d \in S_0$

\[g^{x_1} = y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} y_4 \xrightarrow{f} \quad \log g d = A x_1 + B \]

\[g^{x_1'} = y_1' \xrightarrow{f} y_2' \xrightarrow{f} y_3' \xrightarrow{f} y_4' \xrightarrow{f} \quad \log g d' = A' x_1' + B' \]
New method

\[g^{x(0)} = y_0^{(0)} \xrightarrow{f} \ldots \xrightarrow{f} \ldots \]

\[g^{x(1)} = y_0^{(1)} \xrightarrow{f} \ldots \xrightarrow{f} \ldots \]

\[g^{x(L)} = y_0^{(L)} \xrightarrow{f} \ldots \xrightarrow{f} \ldots \]

linear relation between \(x^{(i)}\) and \(x^{(j)}\)
New method - Construct the graph

\[\mathcal{L}_{x(i), x(j)} \]
New method - Construct the graph

\[y_i, y_j \rightarrow \text{learn all keys in connected component} \]
Description of Even-Mansour

Introduced by Even and Mansour at [Asiacrypt '91].

- motivated by the DESX construction [Rivest, 1984]

![Diagram of Even-Mansour]

DES key k, whitening keys k_1, k_2
Description of Even-Mansour

Introduced by Even and Mansour at [Asiacrypt ’91].

- motivated by the DESX construction [Rivest, 1984]

\[m \rightarrow DES \rightarrow c \]

DES key \(k \), whitening keys \(k_1, k_2 \)

- minimal construction of a blockcipher

\[
\Pi_{K_1,K_2}(m) = \pi(m \oplus K_1) \oplus K_2
\]

\[m \rightarrow \pi \rightarrow \Pi(m) \]

- keyed permutation family \(\Pi_{K_1,K_2} \)
- \(\pi \) is a public permutation on \(n \)-bit values \((N = 2^n)\)
- two whitening keys \(K_1, K_2 \) of \(n \)-bits
Known results in the single-user model

Main result: Any attack with D queries to Π and T off-line computation (queries to the public permutation π) has an upper bound of $O(DT/2^n)$ on probability of success.

Single-Key EM: Proved secure with the same bound [Dunkelman et al.]

P.-A. Fouque, A. Joux and Ch. Mavromati

Attacks on the Even-Mansour scheme
Slidex attack - Single key case

[Dunkelman et al., 2012]

Assume that two plaintexts \((P, P')\) satisfy \(P \oplus P' = K\) (slid pair).
Slidex attack - Single key case

[Dunkelman et al., 2012]

Assume that two plaintexts \((P, P')\) satisfy \(P \oplus P' = K\) (slid pair).

Apply the Davies-Meyer construction to \(\Pi\) and \(\pi\):

\[
F(P) = \Pi(P) \oplus P \quad \text{and} \quad f(P) = \pi(P) \oplus P
\]

\[
F(P') = \Pi(P') \oplus P' = \Pi(P \oplus K) \oplus P \oplus K
\]

\[
= \pi(P \oplus K \oplus K) \oplus K \oplus P \oplus K
\]

\[
= \pi(P) \oplus P = f(P)
\]

\[\Rightarrow F(P') = f(P)\]
Slidex attack - Single key case

[Dunkelman et al., 2012]

Assume that two plaintexts \((P, P')\) satisfy \(P \oplus P' = K\) (slid pair).

Apply the Davies-Meyer construction to \(\Pi\) and \(\pi\):

\[
F(P) = \Pi(P) \oplus P \quad \text{and} \quad f(P) = \pi(P) \oplus P
\]

\[
F(P') = \Pi(P') \oplus P' = \Pi(P \oplus K) \oplus P \oplus K
\]

\[
= \pi(P \oplus K \oplus K) \oplus K \oplus P \oplus K
\]

\[
= \pi(P) \oplus P = f(P)
\]

\[
\Rightarrow F(P') = f(P)
\]

Find a collision,

\[
\pi(P) \oplus P = \Pi(P') \oplus P'
\]

Then, \(P \oplus P'\) is a good candidate for \(K\).
Fix $\delta \in \{0, 1\}^n$

Assume that two plaintexts (P, P') satisfy:
\[
P \oplus P' = K_1 \text{ or } P \oplus P' = K_1 \oplus \delta.
\]

Then, $F(P) = \Pi(P) \oplus \Pi(P \oplus \delta)$ and $f(P) = \pi(P) \oplus \pi(P \oplus \delta)$

\[
\Rightarrow F(P') = f(P) \quad \text{and} \quad F(P' \oplus \delta) = f(P)
\]

Find a collision,
\[
\Pi(P') \oplus \Pi(P' \oplus \delta) = \pi(P) \oplus \pi(P \oplus \delta)
\]

Then, $P \oplus P'$ and $P \oplus P' \oplus \delta$ are good candidates for K_1.
The distinguished points method

- Define a function \(f \) on a set \(S \) of size \(N \).
- Define a distinguished subset \(S_0 \) of \(S \).
- Build chains from random startpoints: \(x_{i+1} = f(x_i) \).
- Stop chain when \(x_\ell = d \in S_0 \).
- Store \((x_0, d, \ell) \).

How do we construct a collision?

How do we recover a chain?
The distinguished points method

- Define a function \(f \) on a set \(S \) of size \(N \).
- Define a distinguished subset \(S_0 \) of \(S \).
- Build chains from random startpoints: \(x_{i+1} = f(x_i) \).
- Stop chain when \(x_\ell = d \in S_0 \).
- Store \((x_0, d, \ell)\).

How do we construct a collision?

How do we recover a chain?
Goal: Find a collision between a set of chains using the public permutation \(\pi \) and a chain obtained from the keyed permutation \(\Pi \)

Define \(F(P) = \Pi(P) \oplus \Pi(P \oplus \delta) \) and \(f(P) = \pi(P) \oplus \pi(P \oplus \delta) \)

\[\rightarrow \text{These chains can cross but not merge} \]
Application on Even-Mansour - New idea

Define new functions:

\[F(P) = P \oplus \Pi(P) \oplus \Pi(P \oplus \delta) \] and
\[f(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta) \]

- Assume that two plaintexts \((P, P')\) satisfy:
 \[P' = P \oplus K_1 \text{ or } P' = P \oplus K_1 \oplus \delta \]
- Then \(F(P') = f(P) \oplus K_1 \) (resp. \(\oplus \delta \))

→ These chains can become parallel
Application on Even-Mansour - New idea

Define new functions:

\[F(P) = P \oplus \Pi(P) \oplus \Pi(P \oplus \delta) \quad \text{and} \]
\[f(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta) \]

- Assume that two plaintexts \((P, P')\) satisfy:
 \[P' = P \oplus K_1 \quad \text{or} \quad P' = P \oplus K_1 \oplus \delta \]
- Then \(F(P') = f(P) \oplus K_1\) (resp. \(\oplus \delta\))

→ These chains can become parallel
Detection of parallel chains with distinguished points

- For f chains: define a distinguished point P as a point with a value of $\pi(P) \oplus \pi(P \oplus \delta) \in S_0$

- For F chains: define a distinguished point P' as a point with a value of $\Pi(P') \oplus \Pi(P' \oplus \delta) \in S_0$

- If $P' = P \oplus K_1$ and P is a distinguish point in the f chain, then:

$$
\Pi(P') \oplus \Pi(P' \oplus \delta) = \pi(P' \oplus K_1) \oplus K_2 \oplus \pi(P' \oplus K_1 \oplus \delta) \oplus K_2
= \pi(P) \oplus \pi(P \oplus \delta)
$$

and then P' is a distinguished point in the F chain

- $\rightarrow P \oplus P' = K_1$
New attack on Even-Mansour

- Build chains from $f(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta)$
 - Stop if $\pi(P) \oplus \pi(P \oplus \delta)$ arrives at a distinguished point
- Build chains from $F(P) = P \oplus \Pi(P) \oplus \Pi(P \oplus \delta)$
 - Stop if $\Pi(P) \oplus \Pi(P \oplus \delta)$ arrives at a distinguished point
- These chains cannot merge but can become parallel
 - Assume $P' = P \oplus K_1$ or $P' = P \oplus K_1 \oplus \delta$
 - $\implies F(P') = f(P) \oplus K_1 \oplus \delta$ respectively
- We only need to store endpoints (don’t have to recompute chains)
Attack Even-Mansour in the multi-user setting

- Build chains from f of length $2^{n/3}$
- Build chains from F of length $2^{n/3}$ for each user
- Construct a graph:
 - Nodes are labelled by the users and the unkeyed user
 - If $F^{(i)} = F^{(j)}$ (for users $(i), (j)$), then add a vertex between the two nodes
 - $\rightarrow K^{(i)}_1 \oplus K^{(j)}_1 (\oplus \delta)$
- If we find a single collision between a user and the unkeyed user, then we learn all keys (in the connected component)

Analysis of the attack:

For $2^{n/3}$ users, $2^{n/3}$ queries/user, $2^{n/3}$ unkeyed queries
\rightarrow recover almost all $2^{n/3}$ keys
Description of PRINCE

PRINCE [Borghoff et al., Asiacrypt 2012]

- 64-bit lightweight block cipher
- 128-bit key k split into equal parts: $k = k_0 \| k_1$
- extension to 192 bit: $k = (k_0 \| k_1) \rightarrow (k_0 \| k'_0 \| k_1)$
- k'_0 derived from k_0 by using the linear function L':
 $L'(k_0) = (k_0 \gg 1) \oplus (k_0 \gg 63)$
- α-reflection property

\[
\forall (k_0 \| k'_0 \| k_1), \quad D_{(k_0 \| k'_0 \| k_1)}(\cdot) = E_{(k'_0 \| k_0 \| k_1 \oplus \alpha)}(\cdot)
\]

\[
E_k(m) = k'_0 \oplus P_{\text{core}}(m \oplus k_0)
\]
Attacks on PRINCE in the single and multi-user setting

Attack in the multi-user setting

Total cost 2^{65} operations for deducing k_0 and k_1 of 2 users in a set of 2^{32}.

Attack in the single-user setting

$$T_{\text{off}} = 2^{96}, T_{\text{on}} = 2^{32}, M = 2^{32}$$

$$D T_{\text{off}} = 2^{128}$$
Conclusion

• Propose two new algorithmic ideas to improve collision based attacks

• Application of the first idea to solve the discrete logarithm problem in the multi-user setting

• Application of both ideas to the Even-Mansour scheme

• Propose two new attacks for PRINCE
 • The attacks have been applied to DESX with some differences
Conclusion

- Propose two new algorithmic ideas to improve collision based attacks
- Application of the first idea to solve the discrete logarithm problem in the multi-user setting
- Application of both ideas to the Even-Mansour scheme
- Propose two new attacks for PRINCE
 - The attacks have been applied to DESX with some differences

Thank you for your attention!